Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(5): 114150, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678565

RESUMO

Seed size is controlled not only by intrinsic genetic factors but also by external environmental signals. Here, we report a major quantitative trait locus (QTL) gene for seed size and weight on chromosome 1 (SSW1) in Arabidopsis, and we found SSW1 acts maternally to positively regulate seed size. Natural variation in SSW1 contains three types of alleles. The SSW1Cvi allele produces larger seeds with more amino acid and storage protein contents than the SSW1Ler allele. SSW1Cvi displays higher capacity for amino acid transport than SSW1Ler due to the differences in transport efficiency. Under low nitrogen supply, the SSW1Cvi allele exhibits increased seed yield and nitrogen use efficiency (NUE). Locations of natural variation alleles of SSW1 are associated with local soil nitrogen contents, suggesting that SSW1 might contribute to geographical adaptation in Arabidopsis. Thus, our findings reveal a mechanism that coordinates seed growth and NUE, suggesting a potential target for improving seed yield and NUE in crops.

2.
Microorganisms ; 12(3)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38543662

RESUMO

Sclerotinia, which is caused by Sclerotinia sclerotiorum, is a severe disease of oilseed rape, which is an important oil crop worldwide. In this study, we isolated a novel strain of Bacillus cereus, named B. cereus HF10, from the rhizosphere soil of the reed on the seaside of Yagzhou Bay, Sanya city, Hainan Province, China. HF10 exhibited a significant antagonistic effect on Sclerotinia sclerotiorum, with an inhibition rate of 79%, and to other species in Sclerotinia, but no antagonistic effect was found on various other fungi or bacteria. HF10 had an 82.3% inhibitory effect on the S. sclerotiorum infection of oilseed rape leaves and a 71.7% control effect on Sclerotinia infection in oilseed rape based on in vitro and in vivo experiments, respectively. The genomics and transcriptomics of HF10 and its loss of the antifungal function mutant Y11 were analyzed, and the results provided insight into potential antifungal substances. Our work provides a novel strain, HF10, for developing a promising biological control agent against Sclerotinia, which infects oilseed rape and other plants.

4.
Plant J ; 113(3): 536-545, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36534091

RESUMO

Polyploidy is a common mode of evolution in flowering plants. Both the natural tetraploid Thinopyrum elongatum and the diploid one from the same population show a diploid-like pairing in meiosis. However, debate on the chromosome composition and origin of the tetraploid Th. elongatum is ongoing. In the present study, we obtained the induced tetraploid Th. elongatum and found that the induced and natural tetraploids are morphologically close, except for slower development and lower seed setting. Using probes developed from single chromosome microdissection and a Fosmid library, obvious differentiations were discovered between two chromosome sets (E1 and E2 ) of the natural tetraploid Th. elongatum but not the induced one. Interestingly, hybrid F1 derived from the two different wheat-tetraploid Th. elongatum amphiploids 8802 and 8803 produced seeds well. More importantly, analysis of meiosis in F2 individuals revealed that chromosomes from E1 and E2 could pair well on the durum wheat background with the presence of Ph1. No chromosome set differentiation on the FISH level was discovered from the S1 to S4 generations in the induced one. In metaphase of the meiosis first division in the natural tetraploid, more pairings were bivalents and fewer quadrivalents with ratio of 13.94 II + 0.03 IV (n = 31). Chromosome pairing configuration in the induced tetraploid is 13.05 II + 0.47 IV (n = 19), with the quadrivalent ratio being only slightly higher than the ratio in the natural tetraploid. Therefore, the natural tetraploid Th. elongatum is of autoploid origin and the induced tetraploid Th. elongatum evolutionarily underwent rapid diploidization in the low generation.


Assuntos
Cromossomos de Plantas , Tetraploidia , Cromossomos de Plantas/genética , Poaceae/genética , Triticum/genética , Meiose/genética , Pareamento Cromossômico/genética
5.
Plants (Basel) ; 11(9)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35567157

RESUMO

Triacylglycerol (TAG) is the most important storage lipid for oil plant seeds. Diacylglycerol acyltransferases (DGATs) are a key group of rate-limiting enzymes in the pathway of TAG biosynthesis. In plants, there are three types of DGATs, namely, DGAT1, DGAT2 and DGAT3. Brassica napus, an allotetraploid plant, is one of the most important oil plants in the world. Previous studies of Brassica napus DGATs (BnaDGATs) have mainly focused on BnaDGAT1s. In this study, four DGAT1s, four DGAT2s and two DGAT3s were identified and cloned from B. napus ZS11. The analyses of sequence identity, chromosomal location and collinearity, phylogenetic tree, exon/intron gene structures, conserved domains and motifs, and transmembrane domain (TMD) revealed that BnaDGAT1, BnaDGAT2 and BnaDGAT3 were derived from three different ancestors and shared little similarity in gene and protein structures. Overexpressing BnaDGATs showed that only four BnaDGAT1s can restore TAG synthesis in yeast H1246 and promote the accumulation of fatty acids in yeast H1246 and INVSc1, suggesting that the three BnaDGAT subfamilies had greater differentiation in function. Transcriptional analysis showed that the expression levels of BnaDGAT1s, BnaDGAT2s and BnaDGAT3s were different during plant development and under different stresses. In addition, analysis of fatty acid contents in roots, stems and leaves under abiotic stresses revealed that P starvation can promote the accumulation of fatty acids, but no obvious relationship was shown between the accumulation of fatty acids with the expression of BnaDGATs under P starvation. This study provides an extensive evaluation of BnaDGATs and a useful foundation for dissecting the functions of BnaDGATs in biochemical and physiological processes.

6.
Sheng Wu Gong Cheng Xue Bao ; 38(5): 1768-1783, 2022 May 25.
Artigo em Chinês | MEDLINE | ID: mdl-35611728

RESUMO

Bacillus spp. are probiotics and can secrete a variety of natural antimicrobiol active substances, of which lipopeptides are an important class. Up to now, about 90 lipopeptides have been identified, and most of them are cyclic lipopeptides. surfactin, iturin, fengycin, bacillomycin and polymyxins are widely studied, and the first three have huge potential for application due to their properties of surfactants and anti-fungal, anti-bacterial, anti-viral, anti-tumor and anti-inflammatory functions. In this paper, the research progress in the structure, function, synthesis regulation, separation, purification and production of surfactin, iturin and fengycin was reviewed. Synthetic biology is a vital means to increase the yield of lipopeptides, and in the future, lipopeptides can be used in crop cultivation, animal farming, food, medicine and petroleum industries as well as environmental protection. Future research should be strengthened on the discovery of new lipopeptides, synthesis of high-activity lipopeptides, economical production of lipopeptides on a large scale and their safety evaluation.


Assuntos
Anti-Infecciosos , Bacillus , Antibacterianos , Anti-Infecciosos/farmacologia , Bacillus subtilis , Lipopeptídeos/farmacologia , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia
7.
Front Plant Sci ; 13: 1082466, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36714692

RESUMO

Silique walls play pivotal roles in contributing photoassimilates and nutrients to fuel seed growth. However, the interaction between seeds and silique walls impacting oil biosynthesis is not clear during silique development. Changes in sugar, fatty acid and gene expression during Brassica napus silique development of L192 with high oil content and A260 with low oil content were investigated to identify key factors affecting difference of their seed oil content. During the silique development, silique walls contained more hexose and less sucrose than seeds, and glucose and fructose contents in seeds and silique walls of L192 were higher than that of A260 at 15 DAF, and sucrose content in the silique walls of L192 were lower than that of A260 at three time points. Genes related to fatty acid biosynthesis were activated over time, and differences on fatty acid content between the two genotypes occurred after 25 DAF. Genes related to photosynthesis expressed more highly in silique walls than in contemporaneous seeds, and were inhibited over time. Gene set enrichment analysis suggested photosynthesis were activated in L192 at 25 and 35 DAF in silique walls and at both 15 and 35 DAF in the seed. Expressions of sugar transporter genes in L192 was higher than that in A260, especially at 35 DAF. Expressions of genes related to fatty acid biosynthesis, such as BCCP2s, bZIP67 and LEC1s were higher in L192 than in A260, especially at 35 DAF. Meanwhile, genes related to oil body proteins were expressed at much lower levels in L192 than in A260. According to the WGCNA results, hub modules, such as ME.turquoise relative to photosynthesis, ME.green relative to embryo development and ME.yellow relative to lipid biosynthesis, were identified and synergistically regulated seed development and oil accumulation. Our results are helpful for understanding the mechanism of oil accumulation of seeds in oilseed rape for seed oil content improvement.

8.
Front Plant Sci ; 12: 743792, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34671377

RESUMO

Plant artificial minichromosomes are the next-generation technology for plant genetic engineering and represent an independent platform for expressing foreign genes and the tools for studying the structure and function of chromosomes. Minichromosomes have been successfully produced by telomere-mediated chromosome truncation in several plants. However, previous studies have primarily focused on the construction and rough characterization of minichromosomes, while the development of stably inherited minichromosomes and their precise characterization and tracking over different generations have rarely been demonstrated. In this study, a 0.35-kb direct repeat of the Arabidopsis telomeric sequence was transformed into Brassica napus to produce artificial minichromosomes, which were analyzed by multifluorescence in situ hybridization (multi-FISH), Southern hybridization, and primer extension telomere rapid amplification (PETRA). The stably inherited minichromosomes C2 and C4 were developed by crossing transgenic plants with wild-type plants and then selfing the hybrids. Notably, two truncation sites on chromosomes C2 and C4, respectively, were identified by resequencing; thus, the artificial minichromosomes were tracked over different generations with insertion site-specific PCR. This study provided two stably inherited minichromosomes in oilseed rape and describes approaches to precisely characterize the truncation position and track the minichromosomes in offspring through multi-FISH, genome resequencing, and insertion site-specific PCR.

9.
Front Bioeng Biotechnol ; 9: 626162, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33681161

RESUMO

Microalgae are considered to be a highly promising source for the production of biodiesel. However, the regulatory mechanism governing lipid biosynthesis has not been fully elucidated to date, and the improvement of lipid accumulation in microalgae is essential for the effective production of biodiesel. In this study, LEAFY COTYLEDON1 (LEC1) from Arabidopsis thaliana, a transcription factor (TF) that affects lipid content, was transferred into Chlorella ellipsoidea. Compared with wild-type (WT) strains, the total fatty acid content and total lipid content of AtLEC1 transgenic strains were significantly increased by 24.20-32.65 and 22.14-29.91%, respectively, under mixotrophic culture conditions and increased by 24.4-28.87 and 21.69-30.45%, respectively, under autotrophic conditions, while the protein content of the transgenic strains was significantly decreased by 18.23-21.44 and 12.28-18.66%, respectively, under mixotrophic and autotrophic conditions. Fortunately, the lipid and protein content variation did not affect the growth rate and biomass of transgenic strains under the two culture conditions. According to the transcriptomic data, the expression of 924 genes was significantly changed in the transgenic strain (LEC1-1). Of the 924 genes, 360 were upregulated, and 564 were downregulated. Based on qRT-PCR results, the expression profiles of key genes in the lipid synthesis pathway, such as ACCase, GPDH, PDAT1, and DGAT1, were significantly changed. By comparing the differentially expressed genes (DEGs) regulated by AtLEC1 in C. ellipsoidea and Arabidopsis, we observed that approximately 59% (95/160) of the genes related to lipid metabolism were upregulated in AtLEC1 transgenic Chlorella. Our research provides a means of increasing lipid content by introducing exogenous TF and presents a possible mechanism of AtLEC1 regulation of lipid accumulation in C. ellipsoidea.

10.
BMC Genomics ; 22(1): 55, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446108

RESUMO

BACKGROUND: During the bread wheat speciation by polyploidization, a series of genome rearrangement and sequence recombination occurred. Simple sequence repeat (SSR) sequences, predominately located in heterochromatic regions of chromosomes, are the effective marker for tracing the genomic DNA sequence variations. However, to date the distribution dynamics of SSRs on chromosomes of bread wheat and its donors, including diploid and tetraploid Triticum urartu, Aegilops speltoides, Aegilops tauschii, Triticum turgidum ssp. dicocoides, reflecting the genome evolution events during bread wheat formation had not been comprehensively investigated. RESULTS: The genome evolution was studied by comprehensively comparing the distribution patterns of (AAC)n, (AAG)n, (AGC)n and (AG)n in bread wheat Triticum aestivum var. Chinese Spring and its progenitors T. urartu, A. speltoides, Ae. tauschii, wild tetroploid emmer wheat T. dicocoides, and cultivated emmer wheat T. dicoccum. Results indicated that there are specific distribution patterns in different chromosomes from different species for each SSRs. They provided efficient visible markers for identification of some individual chromosomes and SSR sequence evolution tracing from the diploid progenitors to hexaploid wheat. During wheat speciation, the SSR sequence expansion occurred predominately in the centromeric and pericentromeric regions of B genome chromosomes accompanied by little expansion and elimination on other chromosomes. This result indicated that the B genome might be more sensitive to the "genome shock" and more changeable during wheat polyplodization. CONCLUSIONS: During the bread wheat evolution, SSRs including (AAC)n, (AAG)n, (AGC)n and (AG)n in B genome displayed the greatest changes (sequence expansion) especially in centromeric and pericentromeric regions during the polyploidization from Ae. speltoides S genome, the most likely donor of B genome. This work would enable a better understanding of the wheat genome formation and evolution and reinforce the viewpoint that B genome was originated from S genome.


Assuntos
Pão , Triticum , Cromossomos , Evolução Molecular , Genoma de Planta , Repetições de Microssatélites/genética , Poliploidia , Triticum/genética
11.
Sci Rep ; 9(1): 12778, 2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31484978

RESUMO

The demand for alternatives to antibiotics to improve the growth performance of food animals is increasing. Defensins constitute the first line of defence against pathogens in the innate immune system of animals and humans. A transgenic Chlorella ellipsoidea strain producing mNP-1 (a mutated rabbit defensin NP-1) was previously obtained in our laboratory. In this study, a process for producing the transgenic strain on a large scale was developed, and the C. ellipsoidea strain producing mNP-1 was used as a feed additive to improve the health and growth performance of chickens. The volume of C. ellipsoidea producing mNP-1 can be scaled up to 10,000 L with approximately 100 g/L dry biomass, and the mNP-1 content of transgenic microalgal powder (TMP) was 90-105 mg/L. A TMP-to-regular feed ratio of 1‰, as the optimal effective dose, can promote the growth of broiler chickens by increasing weight by 9.27-12.95%. mNP-1 can improve duodenum morphology by promoting long and thin villi and affect the microbial community of the duodenum by increasing the diversity and abundance of beneficial microbes. These results suggested that transgenic Chlorella producing mNP-1 can be industrially produced and used as an effective feed additive and an alternative to antibiotics for improving the health and growth performance of broiler chickens or other types of food animals/poultry.


Assuntos
Ração Animal , Galinhas/crescimento & desenvolvimento , Chlorella , Microrganismos Geneticamente Modificados , alfa-Defensinas , Animais , Coelhos , alfa-Defensinas/biossíntese , alfa-Defensinas/farmacologia
12.
J Plant Physiol ; 233: 58-72, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30599461

RESUMO

Proline-rich protein (PRP) is a plant cell wall associated protein. Its distinct patterns of regulation and localization studied in a number of plants indicate that it may play important roles in growth and development. However, the mechanism of how these genes control secondary cell wall development in tree species is largely unknown. Here, we report that a Populus deltoides (Marsh.) proline-rich protein gene PdPRP was preferentially expressed in immature/mature phloem and immature xylem in P. deltoides. PdPRP overexpression increased poplar plant height and diameter as well as the radial width of the phloem and xylem regions, facilitated secondary wall deposition, and induced expression of genes related to microfibril angle (MFA) and secondary wall biosynthesis. Downregulation of PdPRP retarded poplar growth, decreased the radial width of the secondary phloem and secondary xylem regions, reduced secondary wall thickening in fibers and vessels, and decreased the expression of genes related to MFA and secondary wall biosynthesis. These results suggest that PdPRP might positively regulate secondary cell wall formation by promoting secondary wall thickening and expansion in poplar. PdPRP-overexpressing poplar had a lower MFA, indicating that PdPRP may be useful for improving wood stiffness and properties in plants. Together, our results demonstrate that PdPRP is a proline-rich protein associated with cell wall development, playing a critical role in regulating secondary cell wall formation in poplar.


Assuntos
Parede Celular/metabolismo , Genes de Plantas/fisiologia , Proteínas de Plantas/genética , Populus/genética , Arabidopsis , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Hibridização In Situ , Floema/metabolismo , Filogenia , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Populus/crescimento & desenvolvimento , Populus/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Xilema/metabolismo
13.
Int J Mol Sci ; 19(11)2018 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-30400369

RESUMO

Diacylglycerol acyltransferase (DGAT) is a rate-limiting enzyme in the synthesis of triacylglycerol (TAG), the most important form of energy storage in plants. Some residues have previously been proven to be crucial for DGAT1 activity. In this study, we used site-directed mutagenesis of the CeDGAT1 gene from Chlorella ellipsoidea to alter 16 amino acids to investigate effects on DGAT1 function. Of the 16 residues (L482R, E542R, Y553A, G577R, R579D, Y582R, R596D, H603D, H609D, A624R, F629R, S632A, W650R, A651R, Q658H, and P660R), we newly identified 5 (L482, R579, H603, A651, and P660) as being essential for DGAT1 function and 7 (E542, G577, R596, H609, A624, S632, and Q658) that significantly affect DGAT1 function to different degrees, as revealed by heterologous expression of the mutants in yeast strain INVSc1. Importantly, compared with CeDGAT1, expression of the mutant CeDGAT1Y553A significantly increased the total fatty acid and TAG contents of INVSc1. Comparison among CeDGAT1Y553A, GmDGAT1Y341A, AtDGAT1Y364A, BnDGAT1Y347A, and BoDGAT1Y352A, in which tyrosine at the position corresponding to the 553rd residue in CeDGAT1 is changed into alanine, indicated that the impact of changing Y to A at position 553 is specific for CeDGAT1. Overall, the results provide novel insight into the structure and function of DGAT1, as well as a mutant gene with high potential for lipid improvement in microalgae and plants.


Assuntos
Proteínas de Algas/genética , Aminoácidos Essenciais/metabolismo , Chlorella/genética , Diacilglicerol O-Aciltransferase/genética , Triglicerídeos/biossíntese , Proteínas de Algas/química , Proteínas de Algas/metabolismo , Sequência de Aminoácidos , Aminoácidos Essenciais/química , Chlorella/enzimologia , Clonagem Molecular , Diacilglicerol O-Aciltransferase/química , Diacilglicerol O-Aciltransferase/metabolismo , Ácidos Graxos/biossíntese , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Metabolismo dos Lipídeos/genética , Mutagênese Sítio-Dirigida , Mutação , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Triglicerídeos/genética
14.
Int J Mol Sci ; 19(7)2018 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-29986409

RESUMO

Chlorella has great potential as a bio-factory for production of value-added compounds. To produce the desired chemicals more efficiently in Chlorella, genetic tools for modification of Chlorella need to be developed, especially an endogenous promoter. In this study, the promoter of photosystem I protein D (psaD) from Chlorella vulgaris UTEX395 was identified. Computational analysis revealed the presence of several putative cis-acting elements, including a potential core element, and light-responsive or stress-responsive elements. Gene expression analysis in heterologous expression system in Chlamydomonasreinhardtii and Nicotianabenthamiana showed that CvpsaD promoter can be used to drive the expression of genes. Functional analysis of this promoter suggested that the initiator element (Inr) is important for its function (i.e., TATA-less promoter) and that an additional factor (e.g., downstream of the transcriptional start site) might be needed for light response. We have shown that the CvpsaD promoter is functional, but not sufficiently strong, both in microalgae and higher plant.


Assuntos
Chlorella vulgaris/genética , Complexo de Proteína do Fotossistema I/genética , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/fisiologia , Chlamydomonas reinhardtii/genética , Expressão Gênica , Glucuronidase/genética , Glucuronidase/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Canamicina Quinase/genética , Canamicina Quinase/metabolismo , Luz , Luciferases/genética , Luciferases/metabolismo , Plantas Geneticamente Modificadas/genética , Análise de Sequência de DNA , TATA Box , Nicotiana/genética
15.
Sheng Wu Gong Cheng Xue Bao ; 34(6): 852-861, 2018 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-29943531

RESUMO

Haplotype is the combination of a series of genetic mutations that coexist on a single chromosome, each of which has its own unique haplotypes. As a common data analysis method, the analysis of haplotype is effective for the localization of heterozygosis SNPs on single chromosome, the excavation of disease genes and the search of maladies treatments. It mainly includes indirect computational inferential method and direct experimental method. In this review we introduced various haplotype analysis methods and applications, especially two important ones: single-molecule dilution and contiguity-preserving transposition sequencing common technology. Meanwhile, further research prospects on haplotype sequencing were proposed.


Assuntos
Haplótipos , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , Humanos
17.
Front Plant Sci ; 8: 1706, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29046683

RESUMO

Transposable elements (TEs) in plant genomes exhibit a great variety of structure, sequence content and copy number, making them important drivers for species diversity and genome evolution. Even though a genome-wide statistic summary of TEs in rye has been obtained using high-throughput DNA sequencing technology, the accurate diversity of TEs in rye, as well as their chromosomal distribution and evolution, remains elusive due to the repetitive sequence assembling problems and the high dynamic and nested nature of TEs. In this study, using genomic plasmid library construction combined with dot-blot hybridization and fluorescence in situ hybridization (FISH) analysis, we successfully isolated 70 unique FISH-positive TE-related sequences including 47 rye genome specific ones: 30 showed homology or partial homology with previously FISH characterized sequences and 40 have not been characterized. Among the 70 sequences, 48 sequences carried Ty3/gypsy-derived segments, 7 sequences carried Ty1/copia-derived segments and 15 sequences carried segments homologous with multiple TE families. 26 TE lineages were found in the 70 sequences, and among these lineages, Wilma was found in sequences dispersed in all chromosome regions except telomeric positions; Abiba was found in sequences predominantly located at pericentromeric and centromeric positions; Wis, Carmilla, and Inga were found in sequences displaying signals dispersed from distal regions toward pericentromeric positions; except DNA transposon lineages, all the other lineages were found in sequences displaying signals dispersed from proximal regions toward distal regions. A high percentage (21.4%) of chimeric sequences were identified in this study and their high abundance in rye genome suggested that new TEs might form through recombination and nested transposition. Our results also gave proofs that diverse TE lineages were arranged at centromeric and pericentromeric positions in rye, and lineages like Abiba might play a role in their structural organization and function. All these results might help in understanding the diversity and evolution of TEs in rye, as well as their driving forces in rye genome organization and evolution.

18.
BMC Plant Biol ; 17(1): 48, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28222675

RESUMO

BACKGROUND: Oil in the form of triacylglycerols (TAGs) is quantitatively the most important storage form of energy for eukaryotic cells. Diacylglycerol acyltransferase (DGAT) is considered the rate-limiting enzyme for TAG accumulation. Chlorella, a unicellular eukaryotic green alga, has attracted much attention as a potential feedstock for renewable energy production. However, the function of DGAT1 in Chlorella has not been reported. RESULTS: A full-length cDNA encoding a putative diacylglycerol acyltransferase 1 (DGAT1, EC 2.3.1.20) was obtained from Chlorella ellipsoidea. The 2,142 bp open reading frame of this cDNA, designated CeDGAT1, encodes a protein of 713 amino acids showing no more than 40% identity with DGAT1s of higher plants. Transcript analysis showed that the expression level of CeDGAT1 markedly increased under nitrogen starvation, which led to significant triacylglycerol (TAG) accumulation. CeDGAT1 activity was confirmed in the yeast quadruple mutant strain H1246 by restoring its ability to produce TAG. Upon expression of CeDGAT1, the total fatty acid content in wild-type yeast (INVSc1) increased by 142%, significantly higher than that transformed with DGAT1s from higher plants, including even the oil crop soybean. The over-expression of CeDGAT1 under the NOS promoter in wild-type Arabidopsis thaliana and Brassica napus var. Westar significantly increased the oil content by 8-37% and 12-18% and the average 1,000-seed weight by 9-15% and 6-29%, respectively, but did not alter the fatty acid composition of the seed oil. The net increase in the 1,000-seed total lipid content was up to 25-50% in both transgenic Arabidopsis and B. napus. CONCLUSIONS: We identified a gene encoding DGAT1 in C. ellipsoidea and confirmed that it plays an important role in TAG accumulation. This is the first functional analysis of DGAT1 in Chlorella. This information is important for understanding lipid synthesis and accumulation in Chlorella and for genetic engineering to enhance oil production in microalgae and oil plants.


Assuntos
Chlorella/enzimologia , Chlorella/genética , Diacilglicerol O-Aciltransferase/genética , Acil Coenzima A , Arabidopsis , Brassica napus , Diacilglicerol O-Aciltransferase/metabolismo , Genes de Plantas , Metabolismo dos Lipídeos , Mutação , Filogenia , Óleos de Plantas/metabolismo , Saccharomyces cerevisiae/genética , Sementes , Triglicerídeos/metabolismo
19.
Planta ; 245(2): 425-437, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27832372

RESUMO

MAIN CONCLUSION: Different types of P genome sequences and markers were developed, which could be used to analyze the evolution of P genome in Triticeae and identify precisely wheat- A. cristatum introgression lines. P genome of Agropyron Gaertn. plays an important role in Triticeae and could provide many desirable genes conferring high yield, disease resistance, and stress tolerance for wheat genetic improvement. Therefore, it is significant to develop specific sequences and functional markers of P genome. In this study, 126 sequences were isolated from the degenerate oligonucleotide primed-polymerase chain reaction (DOP-PCR) products of microdissected chromosome 6PS. Forty-eight sequences were identified as P genome-specific sequences by dot-blot hybridization and DNA sequences analysis. Among these sequences, 22 displayed the characteristics of retrotransposons, nine and one displayed the characteristics of DNA transposons and tandem repetitive sequence, respectively. Fourteen of 48 sequences were determined to distribute on different regions of P genome chromosomes by fluorescence in situ hybridization, and the distributing regions were as following: all over P genome chromosomes, centromeres, pericentromeric regions, distal regions, and terminal regions. We compared the P genome sequences with other genome sequences of Triticeae and found that the similar sequences of the P genome sequences were widespread in Triticeae, but differentiation occurred to various extents. Additionally, thirty-four molecular markers were developed from the P genome sequences, which could be used for analyzing the evolutionary relationship among 16 genomes of 18 species in Triticeae and identifying P genome chromatin in wheat-A. cristatum introgression lines. These results will not only facilitate the study of structure and evolution of P genome chromosomes, but also provide a rapid detecting tool for effective utilization of desirable genes of P genome in wheat improvement.


Assuntos
Agropyron/genética , DNA de Plantas/genética , Genoma de Planta , Triticum/genética , Cromossomos de Plantas , Evolução Molecular , Marcadores Genéticos , Hibridização in Situ Fluorescente , Poaceae/genética , Reação em Cadeia da Polimerase/métodos
20.
Front Plant Sci ; 8: 2217, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29367855

RESUMO

Male sterility in plants has been strongly linked to mitochondrial dysfunction. Chemical hybridization agent (CHA)-induced male sterility is an important tool in crop heterosis. Therefore, it is important to better understand the relationship between mitochondria and CHA-induced male sterility in wheat. This study reports on the impairment of mitochondrial function duo to CHA-SQ-1, which occurs by decreasing cytochrome oxidase and adenosine triphosphate synthase protein levels and theirs activities, respiratory rate, and in turn results in the inhibition of the mitochondrial electron transport chain (ETC), excessive production of reactive oxygen species (ROS) and disruption of the alternative oxidase pathway. Subsequently, excessive ROS combined with MnSOD defects results in damage to the mitochondrial membrane, followed by ROS release into the cytoplasm. The microspores underwent severe oxidative stress during pollen development. Furthermore, chronic oxidative stress, together with the overexpression of type II metacaspase, triggered premature tapetal apoptosis, which resulted in pollen abortion. Accordingly, we propose a metabolic pathway for mitochondrial-mediated male sterility in wheat, which provides information on the molecular events underlying CHA-SQ-1-induced abortion of anthers and may serve as an additional guide to the practical application of hybrid breeding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...